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P. Falez 2016 - 2019,

... Videos M. El Assal 2020 - 2024

> End-to-end SNN models that lessen the use of supervised learning
> Supervised learning compatible with neuromorphic hardware
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Spiking Neural Networks (SNNs)
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Spiking Neural Networks (SNNs)
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> In our models: one spike per neuron
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Spike-Timing Dependent Plasticity (STDP)

Pre Long Term Depression
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Supervised learning with STDP

State-of-the-art rules
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Supervised learning with STDP

State-of-the-art rules
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Supervised learning with STDP

State-of-the-art rules
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> SSTDP: less neurons, more updates, more accurate
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Supervised learning with STDP
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Supervised learning with STDP

Supervised STDP (SSTDP)
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-> Neurons that reach their target time range are not updated
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Supervised learning with STDP
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Supervised learning with STDP

Supervised STDP (SSTDP)

Samples of class 2 Samples of class 4 Samples of class 6

Average firing time
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Number of training samples

> Saturation of the firing timestamps toward the maximum time
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Contributions

Stabilized Supervised STDP (S2-STDP)
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Contributions

Stabilized Supervised STDP (S2-STDP)
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> Neurons are updated to reach the exact target time
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Contributions

Paired Competing Neurons (PCN)
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Contributions

Paired Competing Neurons (PCN)

Goal: promote neuron specialization on target or non-target
samples through intra-class competition
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Contributions

Paired Competing Neurons (PCN)

Goal: promote neuron specialization on target or non-target
samples through intra-class competition
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Results

Accuracy

Rule MNIST Fashion-MNIST |  CIFAR-10
R-STDP (N=200) | 97.88+0.13 | 83.26+0.22 | 65.56 & 0.38
R-STDP (N=20) | 93.284+0.87 | 77.01+0.22 | 54.02+0.80
SSTDP 96.37+0.09 | 84.124+1.11 | 61.34+0.14
$2-STDP! 97.81+£0.05 | 85.88+0.22 | 61.53+0.16
S2-STDP+PCN! | 98.59 + 0.06 | 87.12 4+ 0.21 | 62.81 +0.15
SVM 08.93+0.04 | 89.30+0.21 | 65.50=+0.29

LOur method
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> S2-STDP outperforms SSTDP
> PCN further improves S2-STDP performance
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Results

Impact on the firing timestamps (MNIST)
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Results

Impact on the firing timestamps (MNIST)
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> S2-STDP reduces the saturation effect
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Conclusion

Objective

@ Train a spiking classifier using a supervised adaptation of STDP

Contributions

@ S2-STDP: a learning rule adapted from SSTDP that reduces
the saturation effect

@ PCN: a training architecture that improves the learning
capabilities of our classifier
Perspectives
o Multi-layer local supervised learning with STDP
o Classification tasks with DVS data
G. Goupy, P. Tirilly, .M. Bilasco, Paired Competing Neurons Improving STDP

Supervised Local Learning In Spiking Neural Networks, 2023.
https://arxiv.org/abs/2308.02194
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Supervised learning in SNNs
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Results

Impact on the firing timestamps (MNIST)
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> PCN are better at reaching their targets
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