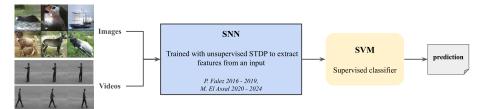
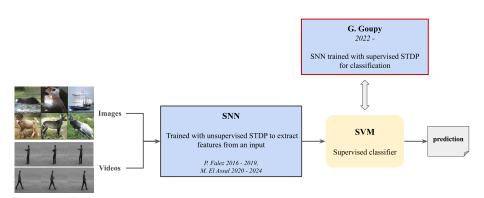
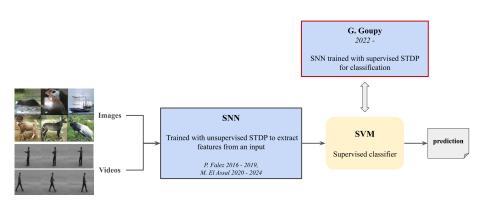
Paired Competing Neurons Improving STDP Supervised Local Learning In Spiking Neural Networks

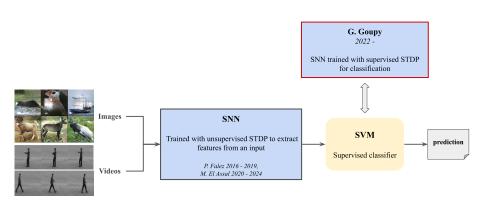
Gaspard GOUPY, Ioan Marius BILASCO, Pierre TIRILLY


Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France



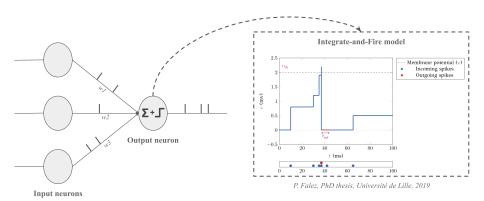


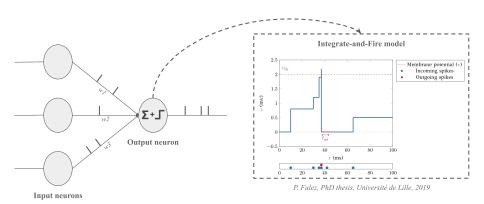
STDP: Spike-Timing Dependent Plasticity



STDP: Spike-Timing Dependent Plasticity

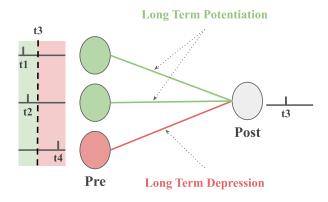
→ End-to-end SNN models that lessen the use of supervised learning


STDP: Spike-Timing Dependent Plasticity

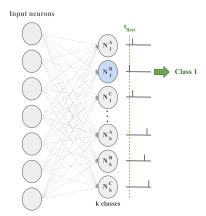

- → End-to-end SNN models that lessen the use of supervised learning
- → Supervised learning compatible with neuromorphic hardware

STDP: Spike-Timing Dependent Plasticity

Spiking Neural Networks (SNNs)



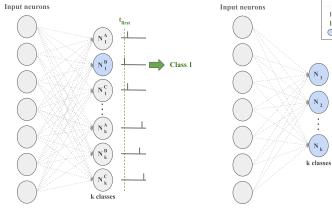
Spiking Neural Networks (SNNs)


→ In our models: one spike per neuron

Spike-Timing Dependent Plasticity (STDP)

State-of-the-art rules

State-of-the-art rules


Reward-modulated STDP (R-STDP)

ΔW = sign × STDP

[Mozafari et al. 2018]

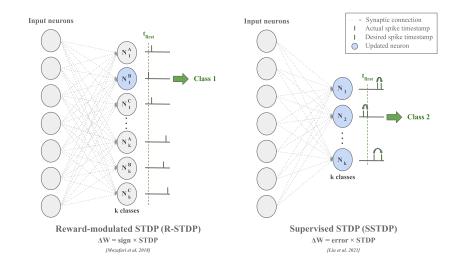
- --> Synaptic connection
- Actual spike timestamp
 Desired spike timestamp
- Updated neuron

State-of-the-art rules

Reward-modulated STDP (R-STDP) $\Delta W = sign \times STDP$

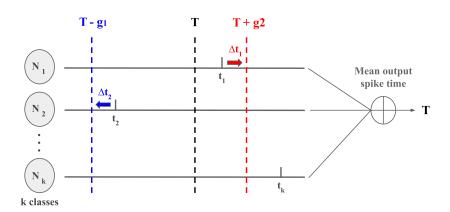
[Mozafari et al. 2018]

Supervised STDP (SSTDP) $AW = error \times STDP$ [Liu et al. 2021]

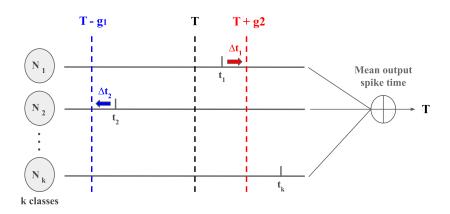

Synaptic connection

Actual spike timestamp

Desired spike timestamp Updated neuron

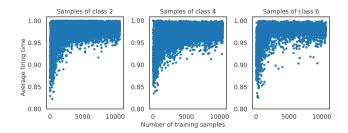

Class 2

State-of-the-art rules



→ SSTDP: less neurons, more updates, more accurate

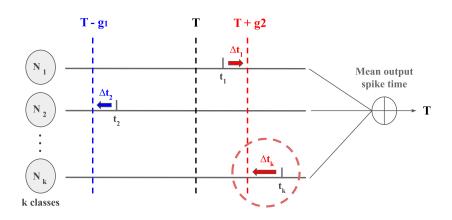
Supervised STDP (SSTDP)



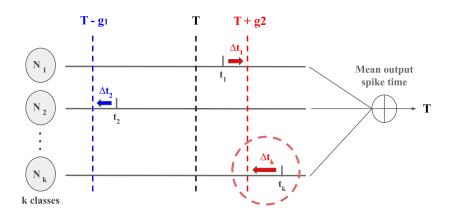
Supervised STDP (SSTDP)

→ Neurons that reach their target time range are not updated

Supervised STDP (SSTDP)

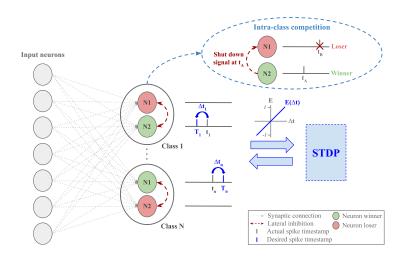


Supervised STDP (SSTDP)



→ Saturation of the firing timestamps toward the maximum time

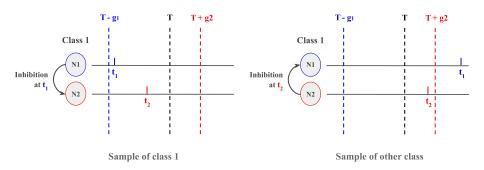
Stabilized Supervised STDP (S2-STDP)



Stabilized Supervised STDP (S2-STDP)

→ Neurons are updated to reach the exact target time

Paired Competing Neurons (PCN)



Paired Competing Neurons (PCN)

Goal: promote neuron specialization on target or non-target samples through intra-class competition

Paired Competing Neurons (PCN)

Goal: promote neuron specialization on target or non-target samples through intra-class competition

Model

Accuracy

Rule	MNIST	Fashion-MNIST	CIFAR-10
R-STDP (N=200)	97.88 ± 0.13	83.26 ± 0.22	$\textbf{65.56} \pm \textbf{0.38}$
R-STDP (N=20)	93.28 ± 0.87	77.01 ± 0.22	54.02 ± 0.80
SSTDP	96.37 ± 0.09	84.12 ± 1.11	61.34 ± 0.14
S2-STDP ¹	97.81 ± 0.05	85.88 ± 0.22	61.53 ± 0.16
S2-STDP+PCN ¹	$\textbf{98.59} \pm \textbf{0.06}$	$\textbf{87.12} \pm \textbf{0.21}$	62.81 ± 0.15
SVM	98.93 ± 0.04	89.30 ± 0.21	65.50 ± 0.29

 $^{^{1}\}mathrm{Our}$ method

Accuracy

Rule	MNIST	Fashion-MNIST	CIFAR-10
R-STDP (N=200)	97.88 ± 0.13	83.26 ± 0.22	$\textbf{65.56} \pm \textbf{0.38}$
R-STDP (N=20)	93.28 ± 0.87	77.01 ± 0.22	54.02 ± 0.80
SSTDP	96.37 ± 0.09	84.12 ± 1.11	61.34 ± 0.14
S2-STDP ¹	97.81 ± 0.05	85.88 ± 0.22	61.53 ± 0.16
S2-STDP+PCN ¹	$\textbf{98.59} \pm \textbf{0.06}$	$\textbf{87.12} \pm \textbf{0.21}$	62.81 ± 0.15
SVM	98.93 ± 0.04	89.30 ± 0.21	65.50 ± 0.29

→ S2-STDP outperforms SSTDP

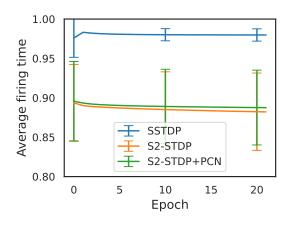
 $^{^{1}\}mathrm{Our}$ method

Accuracy

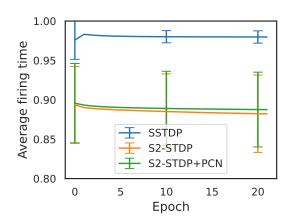
Rule	MNIST	Fashion-MNIST	CIFAR-10
R-STDP (N=200)	97.88 ± 0.13	83.26 ± 0.22	65.56 ± 0.38
R-STDP (N=20)	93.28 ± 0.87	77.01 ± 0.22	54.02 ± 0.80
SSTDP	96.37 ± 0.09	84.12 ± 1.11	61.34 ± 0.14
S2-STDP ¹	97.81 ± 0.05	85.88 ± 0.22	61.53 ± 0.16
S2-STDP+PCN ¹	$\textbf{98.59} \pm \textbf{0.06}$	$\textbf{87.12} \pm \textbf{0.21}$	62.81 ± 0.15
SVM	98.93 ± 0.04	89.30 ± 0.21	65.50 ± 0.29

- → S2-STDP outperforms SSTDP
- → PCN further improves S2-STDP performance

¹Our method


Accuracy

Rule	MNIST	Fashion-MNIST	CIFAR-10
R-STDP (N=200)	97.88 ± 0.13	83.26 ± 0.22	$\textbf{65.56} \pm \textbf{0.38}$
R-STDP (N=20)	93.28 ± 0.87	77.01 ± 0.22	54.02 ± 0.80
SSTDP	96.37 ± 0.09	84.12 ± 1.11	61.34 ± 0.14
S2-STDP ¹	97.81 ± 0.05	85.88 ± 0.22	61.53 ± 0.16
S2-STDP+PCN ¹	$\textbf{98.59} \pm \textbf{0.06}$	$\textbf{87.12} \pm \textbf{0.21}$	62.81 ± 0.15
SVM	98.93 ± 0.04	89.30 ± 0.21	65.50 ± 0.29


- → S2-STDP outperforms SSTDP
- → PCN further improves S2-STDP performance
- → S2-STDP+PCN outperforms R-STDP for similar architectures

¹Our method

Impact on the firing timestamps (MNIST)

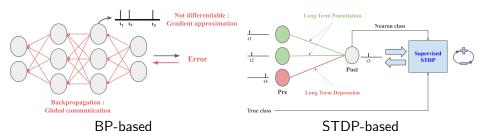
Impact on the firing timestamps (MNIST)

→ S2-STDP reduces the saturation effect

Conclusion

Objective

Train a spiking classifier using a supervised adaptation of STDP


Contributions

- S2-STDP: a learning rule adapted from SSTDP that reduces the saturation effect
- PCN: a training architecture that improves the learning capabilities of our classifier

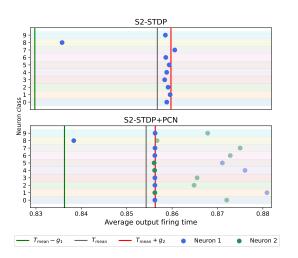
Perspectives

- Multi-layer local supervised learning with STDP
- Classification tasks with DVS data
- G. Goupy, P. Tirilly, I.M. Bilasco, *Paired Competing Neurons Improving STDP Supervised Local Learning In Spiking Neural Networks*, 2023. https://arxiv.org/abs/2308.02194

Supervised learning in SNNs

BP-based STDP-based

Good performance ✓ ✗


Efficient computation/memory ✗ ✓

No gradient approximation ✗ ✓

Local communication ✗ ✓

Easy switch to unsupervised learning ✗ ✓

Impact on the firing timestamps (MNIST)

→ PCN are better at reaching their targets